C-ID Descriptor Calculus-Based Physics for Scientists and Engineers: B

Descriptor Details

• Descriptor Title: Calculus-Based Physics for Scientists and Engineers: B

• **C-ID Number**: 210

Units: 4.0Hours: 0000

Date of Last Revision: 2/28/2025 09:34:50 AM PST

General Description

This course, intended for students majoring in physical sciences and engineering, is part of a three-semester course whose contents may be offered in other sequences or combinations. Core topics include electrostatics, magnetism, DC and AC circuits, and Maxwell's equations.

Prerequisites

C-ID PHYS 205(prerequisite).

Corequisites

2 Semesters college-level calculus (corequisite) (C-ID MATH 210 and 220 OR MATH 211 and 221 OR MATH 900s)

Advisories

Completion of second semester calculus and concurrent enrollment in third semester calculus.

Content

- Electrostatics
- Electric Fields
- Electrostatic Potential
- Gauss's Law
- DC Circuits
- Capacitors
- Resistivity
- Magnetism and Magnetic Fields
- AC Circuits
- Faraday's and Lenz's Laws
- Ampere's Law
- Maxwell's Equations
- "Floating Topics" which may be included in this semester
 - o Fluids
 - Simple Harmonic Motion
 - Mechanical Waves
 - Sound
 - Laws of Thermodynamics
 - Heat Engines
 - Kinetic Theory of Gases
 - Entropy
 - Properties of Electromagnetic Waves

Lab Activities

Laboratory activities should cover the range of topics designated for lecture. The majority of labs should be hands-on activities with "real-world" data collection as opposed to computer simulation, although simulations may be appropriate for some topics in modern physics.

Objectives

Lecture Course Objectives*: At the conclusion of the lecture component of this course, the student should be able to:

- 1. Analyze simple static charge distributions and calculate the resulting electric field and electric potential.
- 2. Analyze simple current distributions and calculate the resulting magnetic field.
- 3. Predict the trajectory of charged particles in uniform electric and magnetic fields.
- 4. Analyze DC and AC circuits in terms of current, potential difference, and power dissipation for each element.

Laboratory Course Objectives*: At the conclusion of the laboratory component of this course, the student should be able to:

- 1. Analyze real-world experimental data, including appropriate use of units and significant figures.
- 2. Relate the results of experimental data to the physical concepts discussed in the lecture portion of the class.

Evaluation Methods

Examinations which include problem solving exercises, final examinations, projects, homework problems, laboratory reports.

*Note that not all of the methods listed are required.

Textbooks

Typical Textbooks:

Giancoli, Douglas C. Physics for Scientists and Engineers

Halliday, David; Resnick, Robert; Walker, Jearl. Fundamentals of Physics

Knight, Randall D. Physics for Scientists and Engineers: A Strategic Approach

Serway, Raymond A.; Jewett, John W. Physics for Scientists and Engineers

Moebs, Willian; Ling,, Samuel J; Sanny, Jeff. University Physics, Volume 2

^{*}Note that course objectives are not limited to the ones listed here.

Typical Lab Manuals:

Edmonds, Jr., Dean S. Cioffari's Experiments in College Physics

Laws, Priscilla. Workshop Physics Activity Guide, Modules 3 and 4

Loyd, David. Physics Lab Manual

Sokoloff, David, Real Time Physics: Active Learning Laboratories, Modules 2 and 3

Laboratory manuals developed on site