C-ID Descriptor Single Variable Calculus I Late Transcendentals

Descriptor Details

• **Descriptor Title**: Single Variable Calculus I Late Transcendentals

• C-ID Number: 211

• Units: 4.0

Date of Last Revision: 10/12/2017 04:43:56 PM PDT

General Description

A first course in differential and integral calculus of a single variable: functions; limits and continuity; techniques and applications of differentiation and integration; Fundamental Theorem of Calculus. Primarily for Science, Technology, Engineering & Math Majors.

Prerequisites

Precalculus, or college algebra and trigonometry, or equivalent.

Corequisites

No information provided

Advisories

No information provided

Content

 Definition and computation of limits using numerical, graphical, and algebraic approaches

- 2. Continuity and differentiability of functions
- 3. Derivative as a limit
- 4. Interpretation of the derivative as: slope of tangent line, a rate of change
- 5. Differentiation formulas: constants, power rule, product rule, quotient rule and chain rule
- 6. Derivatives of trigonometric functions
- 7. Implicit differentiation with applications, and differentiation of inverse functions
- 8. Higher-order derivatives
- 9. Graphing functions using first and second derivatives, concavity and asymptotes
- 10. Maximum and minimum values, and optimization
- 11. Mean Value Theorem
- 12. Antiderivatives and indefinite integrals
- 13. Applications of integration to areas and volumes
- 14. Definite integral; Riemann sum
- 15. Properties of the integral
- 16. Fundamental Theorem of Calculus
- 17. Integration by substitution

Lab Activities

No information provided

Objectives

At the conclusion of this course, the student should be able to:

- 1. Compute the limit of a function at a real number;
- 2. Determine if a function is continuous at a real number;
- 3. Find the derivative of a function as a limit;
- 4. Find the equation of a tangent line to a function;
- 5. Compute derivatives using differentiation formulas;
- 6. Use differentiation to solve applications such as related rate problems and optimization problems;
- 7. Use implicit differentiation;
- 8. Graph functions using methods of calculus;
- 9. Evaluate a definite integral as a limit;

- 10. Evaluate integrals using the Fundamental Theorem of Calculus; and
- 11. Use the definite integral to find areas and volumes

Evaluation Methods

Tests, examinations, homework or projects where students demonstrate their mastery of the learning objectives and their ability to devise, organize and present complete solutions to problems.

Textbooks

A college level textbook designed for science, technology, engineering and math majors, and supporting the learning objectives of this course.